Math forum
Les maths ont leur forum !
Les Cours Thierry
Cours de mathématiques et soutien scolaire par le webmaster de Math foru'
RUBRIQUES

 
Cours & Math-fiches

 
Math foru' sur Facebook


 
Rechercher dans les forums Derniers messages S'inscrire pour poster des messages S'inscrire pour poster des messages
vers le sujet précédent vers le sujet suivant
Modéré par: Thierry, mtschoon, Noemi
Fin 

équation symétrique de degré 4

  - catégorie non trouvée dans : 1ère
Envoyé: 08.10.2005, 18:02

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
salut tout le monde alors voila j'ai des exo à faire à l'avance et je n'y arrive pas
ca doit etre tout simple mais je ne trouve pas voila l'enoncé:

le but de ce problème eest de résoudre l'équation (E): 2x^4-9x^3 +8x^2 -9x+2

1) vérifiez que 0 n'est pas solution de (E)

j'ai donc fais:

2x^4-9x^3 +8x^2 -9x+2=0
equiv/ x(2x^3 -9x^2 +8x-9) +2=0
equiv/ x[2x(x²+4) -3(3x²+3)]+2

mais aprés je bloque a moin que ce ne soit pas ca aidez moi s'il vous plait

(je préfére proceder par étape je commence donc par ça)


merci ciao G3orG3tt3 icon_confused
Top 
 
Envoyé: 08.10.2005, 18:04

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
excusez moi d'avoir envoyé deux fois j'ai buggé

(si le webmaster pourrait supprimer l'un des deux topics merci encore sorry
Top 
Envoyé: 08.10.2005, 18:06

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
je te conseille de diviser tout les nombres de ton equations par x²

ensuite tu peux remarquer que a=e
b=d
ici c'est les coefficients de ton polynome!

ensuite tu vas faire un changement de variable

X=x+(1/x)

calcule moi X² en fonction de 1+(1/x²)

ensuite procede à ton changement de variable dans ton equation et tu resouds
voilà si jamais tu as un problème je t'aiderai
Top 
Envoyé: 08.10.2005, 18:25

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
bon alors je vais essayer de mieux t'expliquer

dejà pourquoi je divise par x² parce que comme ça la plsu grande puissance de ton polynome sera 2 et tu dois savoir resoudre les equation du second degrés

ca te donne 2x^4-9x +8x -9x+2 = 2x²-9x+8-(9/x)+(2/x²)

est ce que là tu comprends?
Top 
Envoyé: 08.10.2005, 18:26

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
oui pour l'instant ca va
Top 
Envoyé: 08.10.2005, 18:29

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
bon alors ensuite je remarque que le coefficient a = e et que b = d
je vais donc pouvoir mettre en facteur la constante de ces coefficients!
essaye de faire ça et tu m'envoie ta reponse
Top 
Envoyé: 08.10.2005, 18:32

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
atten tu a marqué précédement 2x^4-9x +8x -9x+2

alors que c'est 2x^4-9x^3 +8x^2 -9x+2
Top 
Envoyé: 08.10.2005, 18:34

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
oui désolé mais ça ne change pas c'est 9x^3 c'est quand j'ai fais un copier coller que ça à planté
Top 
Envoyé: 08.10.2005, 18:35

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
euh non excuse moi grosse erreur de ma par attend je repond a ton message
Top 
Envoyé: 08.10.2005, 18:38

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
2(x^2+(1/x^2))-9(x+1)+8x=0
Top 
Envoyé: 08.10.2005, 18:41

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
2(x²+(1/x²)) là je suis d'accord avec toi mais aprés tu t'es trompé c'est -9(x+(1/x)+8=0

2(x²+(1/x²))-9(x+(1/x)+8=0 tu obtiens ça au final tu as vu ton erreur?
Top 
Envoyé: 08.10.2005, 18:43

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
oui je comprend j'avais oublié le 8x que j'aurai pu factoriser
Top 
Envoyé: 08.10.2005, 18:46

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
euh le 8 n'est pas avec un x le 8 est tout seul regarde 2x²-9x+8-(9/x)+(2/x²)

bon alors en factorisant tu obtiens 2(x²+(1/x²))-9(x+(1/x)+8=0

tu pose X = x+(1/x)

maintenant calcule x²+(1/x²) en fonction de X² indice developpe (x+(1/x))²
Top 
Envoyé: 08.10.2005, 18:50

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
donc si j'ai compri: X=x²+(1/x²)
Top 
Envoyé: 08.10.2005, 18:52

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
non X=1+(1/x)

X²=(1+(1/x))²
X²=1+(1/x²)+2
X²-2=1+(1/x)²

c'était ça le but de la question
Top 
Envoyé: 08.10.2005, 18:55

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
excuse moi pour mon mal de maths mais je ne comprend pas la finje ne vois pas le rapport avec :vérifiez que 0 n'est pas solution de (E)
Top 
Envoyé: 08.10.2005, 18:57

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
ben tu calcule p(0)= 2 tu peux aussi el justifier parce qu' il y a un terme constant!
Top 
Envoyé: 08.10.2005, 19:03

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
je ne comprends pas pourquoi tu ajoutes +2
(X²=1+(1/x²)+2)
Top 
Envoyé: 08.10.2005, 19:04

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
ben quand tu developpe (x+(1/x))² c'est une identité remarquable du type (u+v)²=u²+2uv+v² et le double produit fais 2 ici



modifié par : titor, 08 Oct 2005 @ 06:07
Top 
Envoyé: 08.10.2005, 19:16

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
j'avais vu l'identitée remarquble mais j'ai fait un erreur de calcul
ensuite je fais:

X²-2=0 et 1+(1/x)²=0 ??????
Top 
Envoyé: 08.10.2005, 19:18

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
oui voilà c'est ça donc au final ton equation sera
2(X²-2)-9X+8
2X²-9X+4=0

que tu resouds avec delta
Top 
Envoyé: 08.10.2005, 19:30

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
n'oublie pas ensuite de reosudre ton equation en x car là tu l'as resolu en X donc tu n'auras plsu qu'à dire ques si X=a où a est une racine du polynome alors a=x+1
voilà
Top 
Envoyé: 08.10.2005, 19:34

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
ok d'accord j'ai du mal mais bon enfin tu veux la suite l'exo??
Top 
Envoyé: 08.10.2005, 19:36

Une étoile
georgette

enregistré depuis: sept.. 2005
Messages: 38

Status: hors ligne
dernière visite: 07.12.05
non je rigole je te remercies beaucoup mais si vraiment j'ai un problème je reviendrais encore merci merci merci
Top 
Envoyé: 08.10.2005, 19:39

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
dis toujours il me reste encore un peu de temps!
Top 
Envoyé: 08.10.2005, 20:48

Constellation
nati

enregistré depuis: oct.. 2005
Messages: 45

Status: hors ligne
dernière visite: 05.03.06
Une question titor , pourquoi , tu tes embeter a ramener lequation au 2 degres , alors que ceter de montrer que o n'est pas solution de p(x) ???
vala merci
Top 
Envoyé: 08.10.2005, 20:59

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
parce que il n'y avait pas de racines evidentes et que aussi c'est un polynome bien spécial puisque ici f(1/x)=1/x^4 f(x)

c'est un polynome de degrés reciproque je crois où il y a un changement de variable qui s'applique toujours voilà
Top 
Envoyé: 09.10.2005, 01:51

Constellation
nati

enregistré depuis: oct.. 2005
Messages: 45

Status: hors ligne
dernière visite: 05.03.06
Mais tu pose :
P(0) = 0-0+0-0+2=2 donc 0 n'est pas solution de P(x) !
Non ?
Top 
Envoyé: 09.10.2005, 12:03

Cosmos


enregistré depuis: juin. 2005
Messages: 350

Status: hors ligne
dernière visite: 29.04.07
oui bien sur que tu as le droit de mettre ça
Top 


Boîte de connexion

 Bienvenue invité
Inscris-toi c'est gratuit !



Rejoins-nous afin de poser tes questions dans les forums de Math foru' :

 Crée ton compte
 Connexion :
Pseudo :


Mot de passe :


Retenir


Identifiants perdus ?
Membres
Dernier Nouveaux aujourd'hui0
Dernier Nouveaux hier2
Dernier Total13134
Dernier Dernier
lKoyung
 
Liens commerciaux