Math forum
Les maths ont leur forum !
Les Cours Thierry
Cours de mathématiques et soutien scolaire par le webmaster de Math foru'
RUBRIQUES

 
Cours & Math-fiches

 
Math foru' sur Facebook


 
Rechercher dans les forums Derniers messages S'inscrire pour poster des messages S'inscrire pour poster des messages
vers le sujet précédent vers le sujet suivant
Modéré par: Thierry, mtschoon, Noemi
Fin 

Equations de cercles (ex-Fonction trinôme)

  - catégorie non trouvée dans : 1ère
Envoyé: 15.10.2006, 00:34

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
Bonsoir j'ai besoin d'une correction de mon exo, je doute que mes réponses soient fausses mais aucun doute qu'elles soient mal justifiées et le prof insiste sur cela et surtout au niveau de la qualité de la justifications. Je poste le sujet et une petite partie de mon travail

1)(E)l'ensemble des points du plan dont les coordonnées vérifient x²+y²-2x+ 4y-12=0
en utilisant la forme canonique d'un trinome prouvez que (E)est un cercle dont vous donnerez le centre et le rayon.

2)(F)l'ensemble des points du plan dont les coordonnées vérifient x²+y²+6x+3y+12=0
Déterminer la nature de l'ensemble (F)

soit p un point sur le cercle et P(x ;y)
(Xp-Xi)²+(Yp-Yi)²=R²
(X-1)²+(Y+2)²-1-4-12=0
(X-1)²+(Y+2)²-17=0
centre(1;-2) et rayon racine de 17


Merci à ceux qui m'aideront

modifié par : Jeet-chris, 15 Oct 2006 - 00:53

et modification du titre parce que cela n'a pas grand chose à voir avec les fonctions trinômes

modifié par : Zorro, 15 Oct 2006 - 13:44
Top 
 
Envoyé: 15.10.2006, 01:13

Modérateur


enregistré depuis: juin. 2005
Messages: 1469

Status: hors ligne
dernière visite: 24.02.13
Salut.

C'est vrai qu'au niveau justification, tu ne justifies rien. On ne sait même pas de quelle question tu parles dans ta démonstration.

Tu as 2 manières de procéder pour montrer que ce sont des cercles.

1°) Soit tu pars de l'équation d'un cercle, et après avoir développé, tu identifies les termes:

L'équation du cercle de rayon R et de centre de coordonnées (a;b) est de la forme (x-a)²+(y-b)²=R².

En développant, l'équation devient: x²+y²-2ax-2by+a²+b²-R²=0.

Par exemple, l'équation du 1) est: x²+y²-2x+ 4y-12=0.

Par identification, a=1, b=-2 et a²+b²-R²=-12.
Donc R²=17. Comme 17 est positif, l'égalité est vraie, alors R=√(17).

D'où c'est bien un cercle, etc.

2°) Soit tu pars de l'équation de ton ensemble, tu factorises, et en observant le signe du terme qui devrait être le R², on en déduit si c'est l'ensemble vide, un point, ou un cercle.

x²+y²-2x+ 4y-12=0
(x²-2x+1)-1+(y²+2*2y+2²)-2²-12=0
(x-1)²+(y+2)²=17

Or l'équation d'un cercle de centre bidule et de rayon truc est de la forme (x-a)²+(y-b)²=R².

Comme 17>0, on a par identification R=√(17), et on conclut.

@+
Top 
Envoyé: 15.10.2006, 12:19

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
Ok merci en fait si je résume je devrais obtenir celà:

1)x²+y²-2x+ 4y-12=0.
Factorisation:
(x-1)²+(y+2)²-1-4-12=0
(x-1)²+(y+2)²-17=0
Par identification, a=1, b=-2
Donc R²=17. Comme 17 est positif, l'égalité est vraie, alors R=√(17).
D'où c'est bien un cercle.

2)x²+y²+6x+3y+12=0
(x-3)²+(y+1,5)²-9-(1,5)²+12=0
(x-3)²+(y+1,5)²+12=0
Par identification, a=3, b=-1.5
Donc R²=-12. Comme -12 est negatif, l'égalité est fausse, alors
ce n'est pas un cercle.Mais c'est quoi, un point??
Top 
Envoyé: 15.10.2006, 12:30

Cosmos
Zorro

enregistré depuis: oct.. 2005
Messages: 9374

Status: hors ligne
dernière visite: 10.01.16
x2+y2+6x+3y+12=0
donc

x2+6x+y2+3y+12=0
or
x2+6x = (x + 3)2 - 9
et
y2+3y = (y + 1,5)2 - (1,5)2

donc x2+y2+6x+3y+12 = ( ... )2 + ( ... )2 + ....

donc ( ... )2 + ( ... )2 = - ....

or une somme de carrés ne peut être négative donc ....

Top 
Envoyé: 15.10.2006, 13:02

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
Ok c'est sur que c'est bcp plus clair,autrement le reste de ce que j'ai mis c'est bon?Autrement merci de votre aide!!Intervention rapide et de qualité,je crois que je vais revenir plus souvent XD
Top 
Envoyé: 15.10.2006, 13:41

Cosmos
Zorro

enregistré depuis: oct.. 2005
Messages: 9374

Status: hors ligne
dernière visite: 10.01.16
Oui sauf que pour décrire un cercle il faut donner son centre et son rayon donc la conclusion de la question est ... (voir la question qui d'ailleurs demande cette précision !)
Top 
Envoyé: 15.10.2006, 14:34

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
La conclusion est que ce n'est pas un cercle?
Top 
Envoyé: 15.10.2006, 14:39

Cosmos
Zorro

enregistré depuis: oct.. 2005
Messages: 9374

Status: hors ligne
dernière visite: 10.01.16
La réponse à la 1) c'est bien un cercle de centre ???? et de rayon ????

La réponse à la 2) c'est ????

Peux-tu trouver des points tels que : x²+y²+6x+3y+12=0 ? oui ou non ? donc que conclus-tu sur l'ensemble des solutions demandé

Top 
Envoyé: 15.10.2006, 16:24

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
Alors j'obtiens pour la
1)x-1)²+(y+2)²-17=0
cercle de centre (1;-2) et de rayon racine17)
2)C'est ???ben je sais pas,un point de coordonées (3;-1.5) icon_confused
Top 
Envoyé: 15.10.2006, 16:31

Cosmos
Zorro

enregistré depuis: oct.. 2005
Messages: 9374

Status: hors ligne
dernière visite: 10.01.16
Parce que si tu remplaes x et y par 3 et -1,5 dans (x-3)²+(y+1,5)² tu trouves -12 ??

Relis ma réponse de 14h39

Si tu ne trouves pas de solution c'est que l'ensemble des solutions est ????
Top 
Envoyé: 15.10.2006, 18:38

Une étoile


enregistré depuis: oct.. 2006
Messages: 17

Status: hors ligne
dernière visite: 03.11.06
l'ensemble de solution est ∅?
Top 


Boîte de connexion

 Bienvenue invité
Inscris-toi c'est gratuit !



Rejoins-nous afin de poser tes questions dans les forums de Math foru' :

 Crée ton compte
 Connexion :
Pseudo :


Mot de passe :


Retenir


Identifiants perdus ?
Membres
Dernier Nouveaux aujourd'hui1
Dernier Nouveaux hier0
Dernier Total13135
Dernier Dernier
ikazawah
 
Liens commerciaux