Math forum
Les maths ont leur forum !
Les Cours Thierry
Cours de mathématiques et soutien scolaire par le webmaster de Math foru'
RUBRIQUES

 
Cours & Math-fiches

 
Math foru' sur Facebook


 
Rechercher dans les forums Derniers messages S'inscrire pour poster des messages S'inscrire pour poster des messages
vers le sujet précédent vers le sujet suivant
Modéré par: Thierry, Noemi, mtschoon
Fin 

Deux petits exercices sur les probabilités

  - catégorie non trouvée dans : Terminale
Envoyé: 18.03.2005, 15:04

KevCo

enregistré depuis: mars. 2005
Messages: 1

Status: hors ligne
dernière visite: 18.03.05
BOnjour ,

Pourriez vous m'aider pour ces exercices .

Une urne U1 contient 12 boules blanches et 8 boules rouges.
Une urne U2 contient 3 boules blanches et 7 boules rouges.

On choisit au hasard une urne et on tire une boule.


1) Quelle est la probabilité de tirer une boule blanche?

P(B)=15/30

2) Quelle est la probabilité de tirer une boule de l'urne U1 sachant que l'on a tiré une boule blanche?

P b(U1)= 12/20

3) Quelle est la probabilité de tirer une boule de l'urne U2 sachant que l'on a tiré une boule rouge?

P r(U2)= 7/10

-------------------------------------------------------

Une urne contient 5 boules noires et 15 boules blanches.

On tire successivement 5 boules au hasard.


1)Quel doit etre le type de tirage afin que l'on soit en présence d'un schéma de Bernouilli?

2)Déterminer la probabilité de tirer 3 boules blanches.

3)Determiner la probabilité de tirer au maximin 4 boules blanches.
Top 
 
Envoyé: 19.03.2005, 14:08

Webmaster
Thierry

enregistré depuis: juil.. 2004
Messages: 3135

Status: hors ligne
dernière visite: 20.07.16
As-tu fait un arbre ?
1ère branches : choix de l'urne (avec probas 0,5 et 0,5
2emes branches : B et B barre (avec probas dépendant de chaque urne)
Une fois que tu as fait l'arbre c'est facile, dis moi ce que tu trouves ...

Pour le 2ème exo, il faut que ce soit un tirage AVEC REMISE. A chaque épreuve la probabilité de tirer une blanche est 15/20. La probabilité d'avoir les 4 est (15/20)^4.
Pour en avoir 3, il faut compter le nombre de branches possibles (tu dois dessiner l'arbre en entier) et additionner chacune de leur probabilité.

Tiens moi au courant :wink:


Thierry
Prof de math à Paris : http://thierry.leprof.free.fr/
Top  Accueil


Boîte de connexion

 Bienvenue invité
Inscris-toi c'est gratuit !



Rejoins-nous afin de poser tes questions dans les forums de Math foru' :

 Crée ton compte
 Connexion :
Pseudo :


Mot de passe :


Retenir


Identifiants perdus ?
Membres
Dernier Nouveaux aujourd'hui0
Dernier Nouveaux hier0
Dernier Total13135
Dernier Dernier
ikazawah
 
Liens commerciaux